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3 Computation and discussion

The �rst graph (Fig. 1) shows the Bohr circular orbits for n = 1 to n = 4 in
atomic units:

αf = 0.0072973525, c =
1

αf
, ~ = m = k = 1. (75)

Then Eq.(5) simply reads

rB = n2. (76)

The corresponding Bohr energy levels (Eq.(17)) are

EB =
1

2 n2
(77)

in Hartree units. The Sommerfeld energy is given by Eq.(69). The Bohr and
Sommerfeld energies are shown in Table 1, together with the γ factors, for
quantum numbers n. The di�erences in energy are small and the γ factors
deviate from unity by less than 10−4. The deviations become even smaller for
growing n.
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n EBohr ESomm γ

1 -0.5000000 -0.4999800 1.0001065
2 -0.1250000 -0.1249988 1.0000266
3 -0.0555556 -0.0555553 1.0000118
4 -0.0312500 -0.0312499 1.0000067

Table 1: Bohr and Sommerfeld energy levels (in Hartree units) and γ factor for
quantum numbers n.
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The precession factor of the Sommerfeld theory x2 is related to the half-
right latitude α of the precessing ellipse by Eqs.(64) and (67). x2 depends on
the quantum number n via the Bohr radius (75) and the velocity (35) appearing
in the γ factor (37). The dependence x2(α) has been graphed in Fig. 2 as a
function of the argument α · n2 so that all Bohr radii are shifted to α = 1 and
can be compared directly. There is a sharp pole at α ≈ rB or, more precisely,
α = γ rB . This pole becomes even sharper for increasing n. Therefore there is
only a very small range around the Bohr radii where the Sommerfeld ellipses are
de�ned, namely in the region with x2 ≈ 1. We see that the Bohr quantization
of orbits is relaxed slightly in Sommerfeld theory but essentially remains valid.

The inverse relation α(x) is graphed in Fig 4. the α values have been nor-
malized by rB or n2, respectively, so that the y scale is comparable. We see
a very small variation of the α range which gets even smaller for rising x, in
accordance with Fig. 3.

The ellipticity ε of Sommerfeld theory can be expressed by means of Eqs.(20)
and (21) by

ε =

√
1 + 2

E α

k
(78)

(see Eq.(70)) with α given by Eq.(67) and E given by Eq.(69). Thus, ε depends
on x and n. Fig. 4 shows that ε is unde�ned for x < 0.8 since the square
root argument is negative there. For growing x, the ellipticity is bound by an
asymptote for each value of n. The small magnitude of ε shows again that
Sommerfeld ellipses are extremely close to circles.

The e�ect of the Bohr velocity (35) has been investigated by arti�cially
doubling this term. then ε(x) only starts at 1.6 (Fig. 5). This is unphysical
because x = 1 must be included in the range of ε. The results are sensitive to
the value of v.

The last part of this section investigates the Eckardt quantization. Inserting
Eq.(74) into the equation for the precessing ellipse (50) gives

r =
r0

(n− 1) ε cos(nθ)
. (79)

These orbits are shown in Fig. 6. For n = 1 where r diverges a circular orbit
has been assumed and a constant ε = 0.3 has been used for all graphs. It can
be seen that Eckardt quantization gives closed orbits (standing circular waves)
with n being the number of maxima.

From Sommerfeld theory we know that the ellipticity is a function of energy,
therefore we try to derive a corresponding expression for Eckardt quantization.
Since the orbits in Eckardt quantization are highly elliptic, we have to use both
components of the velocity. According to earlier papers we have

vr =
ε L

αm
sin (n θ) , (80)

vθ =
L

mr
. (81)

By means of

cos (n θ) =
1

ε

(α
r
− 1
)
, (82)

sin (n θ) =
√
1− cos2 (n θ) (83)
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we obtain for the squared modulus of velocity after some arithmetics

v2 =

((
ε2 − 1

)
r + 2α

)
L2

α2m2 r
. (84)

The total energy is

E =
1

2
mv2 − k

r
(85)

=
1

r

(
L2

αm
− k
)
+ (ε2 − 1)

L2

2α2m
. (86)

This expression must be constant, therefore the r dependence must vanish. This
is ensured by setting

L2 = k αm (87)

which relates the angular momentum with a certain half-right latitude. Then
the energy becomes

E =

(
ε2 − 1

)
k

2α
(88)

from which follows

ε2 = 1 +
2E α

k
. (89)

Astonishingly this is the same expression as Eq.(70) or (78) derived from Som-
merfeld theory. However, the energy is not quantized, α is quantized according
to Eq.(74):

α =
r0

n− 1
, n 6= 1. (90)

Therefore the orbits look di�erent to Sommerfeld theory, and ε is not small for
n > 1. The �rst �ve orbits are graphed in Fig. 7 and the corresponding ε values
are shown there. Compared to Fig. 6, the orbits do not shrink with n but keep
their maximum radius.

The energy could be quantized by inseting the quantized α into Eq.(88) but
then E depends on n instead of 1/n2 as in Bohr and Sommerfeld theory. A
correct behaviour of E(n) would require additional quantization constraints for
ε.
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Figure 1: Bohr radii rB = n2 for quantum numbers n.

Figure 2: Sommerfeld precession factor x2(α · n2) for quantum numbers n.
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Figure 3: Normalized half-right latitude α(x)/n2 for Sommerfeld ellipses.

Figure 4: Ellipticity ε(x) for Sommerfeld ellipses.
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Figure 5: Ellipticity ε(x) for Sommerfeld ellipses with arti�cially enhanced or-
bital velocity v → 2v.

Figure 6: Orbitals of Eckardt quantization with ε = 0.3, r0 = 1.
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Figure 7: Orbitals of Eckardt quantization with variable ε with r0 = 1, E =
−0.45.
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