Orbitals of the Bohr and Sommerfeld atoms with quantized x theory

M. W. Evans, H. Eckardt, Civil List, A.I.A.S. and UPITEC

(www.webarchive.org.uk, www.aias.us, www.atomicprecision.com, www.upitec.org)

3 Computation and discussion

The first graph (Fig. 1) shows the Bohr circular orbits for n=1 to n=4 in atomic units:

$$\alpha_f = 0.0072973525, \quad c = \frac{1}{\alpha_f}, \quad \hbar = m = k = 1.$$
 (75)

Then Eq.(5) simply reads

$$r_B = n^2. (76)$$

The corresponding Bohr energy levels (Eq.(17)) are

$$E_B = \frac{1}{2 n^2} \tag{77}$$

in Hartree units. The Sommerfeld energy is given by Eq.(69). The Bohr and Sommerfeld energies are shown in Table 1, together with the γ factors, for quantum numbers n. The differences in energy are small and the γ factors deviate from unity by less than 10^{-4} . The deviations become even smaller for growing n.

[†]email: mail@horst-eckardt.de

\overline{n}	E_{Bohr}	E_{Somm}	γ
1	-0.5000000	-0.4999800	1.0001065
2	-0.1250000	-0.1249988	1.0000266
3	-0.0555556	-0.0555553	1.0000118
4	-0.0312500	-0.0312499	1.0000067

Table 1: Bohr and Sommerfeld energy levels (in Hartree units) and γ factor for quantum numbers n.

^{*}email: emyrone@aol.com

The precession factor of the Sommerfeld theory x^2 is related to the half-right latitude α of the precessing ellipse by Eqs.(64) and (67). x^2 depends on the quantum number n via the Bohr radius (75) and the velocity (35) appearing in the γ factor (37). The dependence $x^2(\alpha)$ has been graphed in Fig. 2 as a function of the argument $\alpha \cdot n^2$ so that all Bohr radii are shifted to $\alpha = 1$ and can be compared directly. There is a sharp pole at $\alpha \approx r_B$ or, more precisely, $\alpha = \gamma r_B$. This pole becomes even sharper for increasing n. Therefore there is only a very small range around the Bohr radii where the Sommerfeld ellipses are defined, namely in the region with $x^2 \approx 1$. We see that the Bohr quantization of orbits is relaxed slightly in Sommerfeld theory but essentially remains valid.

The inverse relation $\alpha(x)$ is graphed in Fig 4. the α values have been normalized by r_B or n^2 , respectively, so that the y scale is comparable. We see a very small variation of the α range which gets even smaller for rising x, in accordance with Fig. 3.

The ellipticity ϵ of Sommerfeld theory can be expressed by means of Eqs. (20) and (21) by

$$\epsilon = \sqrt{1 + 2\frac{E\,\alpha}{k}}\tag{78}$$

(see Eq.(70)) with α given by Eq.(67) and E given by Eq.(69). Thus, ϵ depends on x and n. Fig. 4 shows that ϵ is undefined for x < 0.8 since the square root argument is negative there. For growing x, the ellipticity is bound by an asymptote for each value of n. The small magnitude of ϵ shows again that Sommerfeld ellipses are extremely close to circles.

The effect of the Bohr velocity (35) has been investigated by artificially doubling this term. then $\epsilon(x)$ only starts at 1.6 (Fig. 5). This is unphysical because x=1 must be included in the range of ϵ . The results are sensitive to the value of v.

The last part of this section investigates the Eckardt quantization. Inserting Eq.(74) into the equation for the precessing ellipse (50) gives

$$r = \frac{r_0}{(n-1)\,\epsilon\cos(n\theta)}.\tag{79}$$

These orbits are shown in Fig. 6. For n=1 where r diverges a circular orbit has been assumed and a constant $\epsilon=0.3$ has been used for all graphs. It can be seen that Eckardt quantization gives closed orbits (standing circular waves) with n being the number of maxima.

From Sommerfeld theory we know that the ellipticity is a function of energy, therefore we try to derive a corresponding expression for Eckardt quantization. Since the orbits in Eckardt quantization are highly elliptic, we have to use both components of the velocity. According to earlier papers we have

$$v_r = \frac{\epsilon L}{\alpha m} \sin(n \theta), \qquad (80)$$

$$v_{\theta} = \frac{L}{m \, r}.\tag{81}$$

By means of

$$\cos(n\theta) = \frac{1}{\epsilon} \left(\frac{\alpha}{r} - 1\right),\tag{82}$$

$$\sin(n\theta) = \sqrt{1 - \cos^2(n\theta)} \tag{83}$$

we obtain for the squared modulus of velocity after some arithmetics

$$v^{2} = \frac{\left(\left(\epsilon^{2} - 1\right) r + 2\alpha\right) L^{2}}{\alpha^{2} m^{2} r}.$$
 (84)

The total energy is

$$E = \frac{1}{2}mv^2 - \frac{k}{r} \tag{85}$$

$$=\frac{1}{r}\left(\frac{L^2}{\alpha m}-k\right)+\left(\epsilon^2-1\right)\frac{L^2}{2\alpha^2 m}.$$
(86)

This expression must be constant, therefore the r dependence must vanish. This is ensured by setting

$$L^2 = k \alpha m \tag{87}$$

which relates the angular momentum with a certain half-right latitude. Then the energy becomes

$$E = \frac{\left(\epsilon^2 - 1\right) k}{2\alpha} \tag{88}$$

from which follows

$$\epsilon^2 = 1 + \frac{2E\alpha}{k}.\tag{89}$$

Astonishingly this is the same expression as Eq.(70) or (78) derived from Sommerfeld theory. However, the energy is not quantized, α is quantized according to Eq.(74):

$$\alpha = \frac{r_0}{n-1}, \quad n \neq 1. \tag{90}$$

Therefore the orbits look different to Sommerfeld theory, and ϵ is not small for n > 1. The first five orbits are graphed in Fig. 7 and the corresponding ϵ values are shown there. Compared to Fig. 6, the orbits do not shrink with n but keep their maximum radius.

The energy could be quantized by inseting the quantized α into Eq.(88) but then E depends on n instead of $1/n^2$ as in Bohr and Sommerfeld theory. A correct behaviour of E(n) would require additional quantization constraints for ϵ .

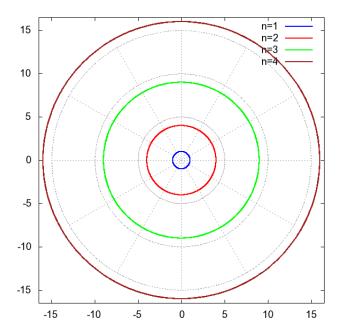


Figure 1: Bohr radii $r_B=n^2$ for quantum numbers n.

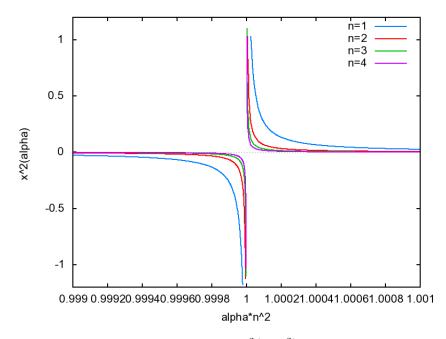


Figure 2: Sommerfeld precession factor $x^2(\alpha \cdot n^2)$ for quantum numbers n.

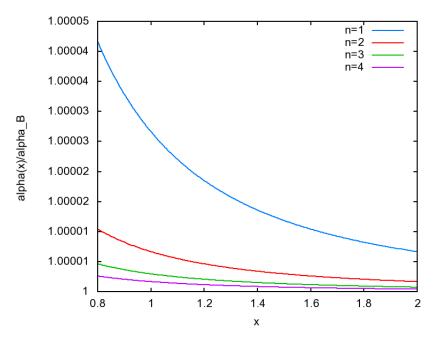


Figure 3: Normalized half-right latitude $\alpha(x)/n^2$ for Sommerfeld ellipses.

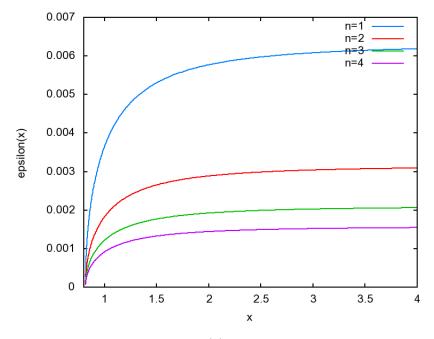


Figure 4: Ellipticity $\epsilon(x)$ for Sommerfeld ellipses.

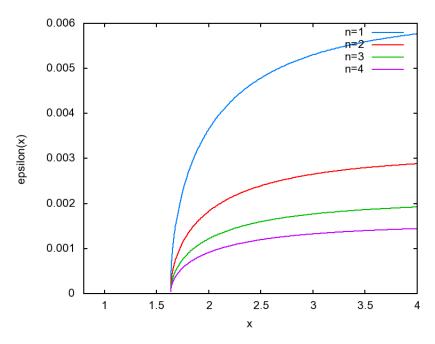


Figure 5: Ellipticity $\epsilon(x)$ for Sommerfeld ellipses with artificially enhanced orbital velocity $v \to 2v$.

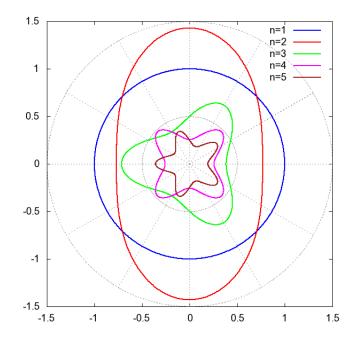


Figure 6: Orbitals of Eckardt quantization with $\epsilon=0.3,\,r_0=1.$

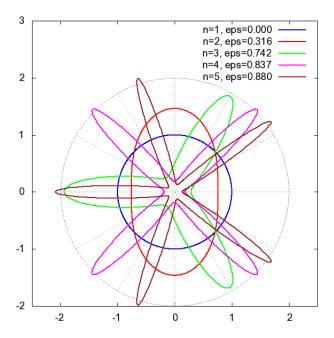


Figure 7: Orbitals of Eckardt quantization with variable ϵ with $r_0=1,\,E=-0.45.$