DEVELOPMENT OF SPIN CONNECTION RESONANCE IN THE
COULOMB LAW.

by

M. W. Evans

Civil List Scientist

and

H. Eckardt,

A.LAS. Deputy Director and Fellow

(emyrone(@aol.com. horsteck@aol.com)

ABSTRACT

It is shown that the Coulomb law if developed in the context of a generally covariant
unified field theory produces several classes of resonant phenomena due to the fact that the
electromagnetic field is the Cartan torsion of Einstein Cartan Evans (ECE) field theory. The
electromagnetic potential is always defined with the spin connection, so the possibility of
resonance is always present, in the sense that the potential of the Coulomb law can be
amplified by damped or undamped resonance. In suitable materials this resonance produces

free electrons which may be used for power generation as first demonstrated by Tesla.

Keywords: ECE theory, spin connection resonance in the Coulomb law, new sources of

electric power.
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1. INTRODUCTION

Recently a generally covariant unified field theory has been developed based on
standard Cartan geometry {1-8} - Einstein Cartan Evans (ECE) field theory. One of the many
consequences of the ECE theory is that the fundamental laws of classical electrodynamics are
augmented. The ECE theory reduces to these well known laws in well defined limits, but also
gives more information based on the fact that the electromagnetic field tensor is the Cartan
torsion within a proportionality cA(Qin volts. The electromagnetic potential is always
defined as the Cartan tetrad, so that the electromagnetic field always contains the spin
connection. In the absence of the spin connection the ECE theory reduces straightforwardly to
the standard Maxwell Heaviside (MH) theory {9}, because without a spin connection , space-
time reduces to the flat Minkowski space-time of MH theory.

In Section 2 the most general ECE equation of the Coulomb law is developed to
show that there exists a class of resonant solutions which can be demonstrated
straightforwardly. The Coulomb limit is defined and conditions for damped and undamped
resonance discussed . In Section 3, another novel class of resonant solutions is obtained by
considering a heterodyne type driving force with a simple spin connection. There is freedom
of choice of spin connection as long as the reduction to the Coulomb law is well defined. In
the vast majority of cases the Coulomb law is observed to be very accurate, but Tesla {10}
was the first to demonstrate experimentally that resonant power can be obtained form space-

time. Therefore behind the Coulomb law is hidden a new world of possibilities for obtaining

resonant electric power from space-time.

2. SIMPLE RESONANT SOLUTIONS
The basic spin connection resonance (SCR) equation of the Coulomb law {1-

8} is written in terms of the radial coordinate as:
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where % is the potential of the Coulomb law, r is the radial coordinate, & The spin
connection, f the charge density and éo the vacuum permittivity in S.I. units. Eq. ( 1 )
can be reduced straightforwardly to the basic structure of the damped resonator equation ,
which was discovered in the eighteenth century { \\ }:
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In Eq. ( D_ ) F takes the role of the friction coefficient, and K,, is a Hooke’s law type
wave-number. The right hand side term in Eq. ( Pl ) is a cosinal driving term with a

characteristic wave-number YK , and A is a proportionality constant.

Eq ( 1 ) reduces to Eq. ( Q ) when: (
— ()
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Solving these equations defines the condition under which the spin connection gives the

simple resonance equation ( QL ):

ok Wl ok =0

Under this condition, Eq. ( 4. ) becomes:
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an equation which gives well known resonant solutions and their equivalent circuits, so that
the circuits used for example by Tesla can be designed and etched on to foundry material.

Reduction to the Coulomb law occurs whcn
F = —_— (’l>
Y

It is seen from Eqns. ( 3 ) and ( \.\.. ) that under the condition ( —7 ):
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so that the Coulomb law is obtained:
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In general however there is no reason to assume that condition ( 7 ) must always hold. The
Coulomb law holds experimentally in the vast majority of applications, but in general
relativity it is greatly enriched by the spin connection. The traditional structure ( A ) is
regained if and only if the friction coefficient is defined by Eq. ( 1 ).

Reduction to the undamped resonator occurs when:
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which implies:
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If there is dispersion § D\ } in the wave-number K, it becomes complex valued:

v, - S o = (9)

The conjugate product is:
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and is positive valued, but the square is :
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Therefore an undamped resonator equation of the type:

p! ¥ ( W
; ¢ + Yo Y<s = '_7£“
- ¢
X2 °
can exist. At resonance it is well known that the solutions of the undamped resonator become

inﬁnite, Signifying the release of free electrons into a power circuit from well chosen

materials {1-8}.
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In Fig. 1 the function o,(r) (Eq.(5)) is plotted for three B values. For B=0, o, takes a form of a shifted
1/r function. Because we chose kp=2=const., we get a shift compared to the theoretical result of
Eq.(11) for o,. For all values of B there is a common radius value (r=1) at which omega is zero.
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Fig. 1. Graph of o(r) for ;=2 and three B values.

3. Direct Solution of the SCR Equation for the Coulomb Law

In {4} it was shown that the radial differential equation

d
—¢ z
d & d pPlr)
-—+ o =-
£ rz d.rz E

(15)

has to be solved in order to get resonances of the Coulomb law. ®(r) denotes the radial
dependence of the potential and p(r) is a charge density serving as a “driving force”. In
Eq.(15) a special form of the spin connection has been assumed. According to the theory of
ordinary differential equations, the most general solution consists of the general solution of
the homogeneous equation (p=0) to which one particular solution of the inhomogeneous
equation has to be added. The solution of the homogeneous equation

d
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with arbitrary constants k1 and k2. By choosing k1 = q/(2 = &), k2 = 0 we obtain the solution

o = q

c q4mneypy

(17
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which is exactly the Coulomb potential of a point charge q. Thus Eq. (15) is fully compatible
to the Poisson equation for a vanishing driving force.

The particular solution of the full equation (15) is given by

Jrzp(rl dr—rz J.p(rj dr

d =
p 2Er

(18) P

(we used the computer algebra system Maxima { '} to obtain this). From this solution it can
be seen that the key for the occurrence of resonances are the two integrals. If an oscillating
function is inserted for p(r), at least one of the integrals has to go to inifity for certain
parameters contained in p(r). In the following we will investigate this behaviour for several
predefined functions p(r). Our first choice is

p{rl:=Adcos(rr)

(19)

which is oscillating with an amplitude A and spatial frequency x. The first integral of (18)
then results to

2 ((Kzrz—i.’]sin[x:)+2Krcostlcr])}l
recos(rr)drad

3
K

(20) =

and the second to

z .
rzj.cos(xr)dr}l r sin(xkr)A
Q1) _ R
Combining the terms of (18) leads to the particular solution

([sinlKr)-Krcos(Ker)lA

3
EX r
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This is an oscillating function without resonances (all parameters set to unity), see Fig. 2.
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Fig. 2. Particular solution ®p,(r).

Next we use the driving force

23) p(r):=Acos((K+6)1‘)005((1{—6)1.‘)

This is a heterodyne beat which is an interference of two near frequencies xk+8 and x-5. The
graph of this function is shown in Fig. 3 for 6/x =0.05 :
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Fig. 3. Heterodyne function (interference of two near-by frequencies).

Calculating the solution in the same way as in Eqs.(20,21) above leads to the result after some
simplifications:
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Fig. 4. Particular solution @p(r).
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This shows the following behaviour as graphed in Fig. 4. Obviously the curve follows the
heterodyne form of p(r), cf. Fig. 3. We are interested in the behaviour § --> 0, i.e. whether

there is a resonance behaviour for this case. The third and fourth term of Eq. (24) are of the
form

-sin(ax)/x> + cos(ax)/x>

with a constant a. Both terms diverge for 6 --> 0 but cancel each other in part so that the limit
remains finite:

(3 sin(Z2 xr)- 6K r cosl|2 Kr]+BKar3)A

4B £ Ka r

(25) limit @y ford-->0 =

The graph for ®,; (6) for a constant radius r=60 (Fig. 5) shows that @y, neverveless grows
significantly for 6 --> 0:
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Fig. 5. Particular solution ®(6) for a constant radius r=60.

As a third example we modify the driving force by using the sine instead of the cosine
function in the second factor:

p(r):=Acos({k+d)r)sin((k-3)xr)
(26)

The r-dependence of this p(r) is shown in Fig. 6. Compared with Fig. 2, this is only a phase
shift.
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Fig. 6. Heterodyne function of Eq. (26).
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The particular solution of this driving force is

sinl(2xr)d cosl2xr)ad sinli26r)A cos(28r)A
+ —_ —_
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which at a first glance looks similar to @, (Eq. 24) of the second example. From the graph
®;(r) (Fig. 7) we can see, however, that the function diverges for r --> 0.
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Fig. 7. Particular solution ®3(r).
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Fig. 8. Particular solution ®,3(d) for a fixed value of r=45.

In addition we obtain resonances for any r if delta approaches zero. This can be seen from Fig.
8, which was calculated for r=45 and has to be compared to Fig. 5. The reason for the
unbound resonance is that the two diverging terms in Eq. (27) have the same sign. Compared
to Eq. (24), no compensation is present.

We have to state that there is an unsteady transition in the limit & --> 0. Then Eq. (26)
transforms to

sin(2xkpr)A
plr):=Acos(rr)sin{rr) 2
(28) =
i.e. the driving force is a pure sinoidal function with a high frequency, compared to the
ocsillating & terms of Eq. (27). For decreasing 0 the amplitude grows by the same factor over

the whole range of r, see Fig. 9. At the same time the wavelength increases correspondingly.
This behaviour collapses for 6=0.

Interpreting this physically, driving heterodyne beats evoke an electrical SCR potential which
exhibits very strong fluctuations from and to the spacetime background. The amplitude of the
oscillations does not go to zero for large radii in contrast to the Coulomb potential. This is a
completely different behaviour.
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Fig. 9. Particular solution ®3(r) for several 6 values.

There are now two methods to construct circuits from Eq.(15). Either one uses Eq.(15)
directly as shown in this paper or the equation is transformed by the Euler method so that the
circuit can be constructed simply as a LC resonance circuit. The Euler transformation changes
the driving force so that the transformed force has to be implemented in that case. This was
the method described in { '} The current method could have the advantage of being
applicable more directly. However, the conversion of Eq. (15) to a circuit is not
straightforward. As a third independent method for evoking spacetime resonances, so-called
vacuum fluctuations experienced in the Lamb shift { !} have been identified.
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Additional References

M. W. Evans, Generally Covariant Unified Field Theory (Abramis, 2005), vol. 4,
chapter 7: “Space-Time Resonance In The Coulomb Law”.

Maxima computer algebra system, http://maxima.sourceforge.net/.

Papers 85-87 of the ECE series, www.aias.us and www.atomicprecision.com).
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