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Derivation Of The Geometrical Phase From
The Evans Phase Law Of Generally Covariant
Unified Field Thoery

Summary. The phase law of generally covariant electrodynamics is used to explain
straightforwardly the origin of the geometrical and Berry phase effects, exemplified
by the Tomita-Chiao effect. Both effects are described by a phase factor that is
constructed from the generally covariant Stokes formula of differential geometry, a
phase factor in which the contour integral over the potential field A(3) is equated
to the area integral over the gauge invariant field B(3), the Evans-Vigier field. The
latter is the fundamental spin Casimir invariant of the Einstein group of general
relativity applied to electrodynamics. General relativity as extended in the Evans
unified field theory is needed for a correct understanding of all phase effects in
physics, an understanding that is forged through the Evans phase law, the origin
both of the Berry phase and the geometrical phase of electrodynamics observed in
the Sagnac and Tomita-Chiao effects.
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11.1 Introduction

Phase factors such as the Berry phase or that observed in the Tomita-Chiao
effect are due in general [1,2] to parallel transport in the presence of a gauge
field. This inference suggests that such phase factors should properly be de-
scribed by covariant derivatives in general relativity. Recently a unified field
theory has been developed in which electrodynamics is generally covariant
[3-9], i.e., becomes understandable with general relativity as required by the
Einsteinian principle that all theories of natural philosophy be theories of gen-
eral relativity. One of the outcomes of this theory is the generally covariant
Evans phase law of the unified field, a phase factor which is constructed [10,11]
from the generally covariant Stokes formula of differential geometry [12,13].
The field theory is made generally covariant by replacing the exterior deriva-
tive of differential geometry, denoted d∧, by the covariant exterior derivative,
denoted by D∧. Therefore the magnetic field, for example, is defined by the
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first Maurer Cartan structure relation [12]

B = D ∧A = d ∧A+ gA ∧A, (11.1)

where A is the potential field and g is a proportionality factor with the units of
inverse magnetic flux (e/~). In the older Maxwell Heaviside (MH) field theory
the magnetic field is defined by

B = d ∧A, (11.2)

and it is therefore not a generally covariant field theory. For electrodynamics
the Evans phase law is

Φ = exp
(
ig

∮
A(3) · dr

)
= exp

(
ig

∮
B(3) · kdAr

)
:= exp(iΦE), (11.3)

where A(3) and B(3) are directed in the propagation axis of the electromag-
netic beam and where Ar is the area enclosed by the beam. The Z axis in
Eq. (11.3) is the propagation axis of the beam. For matter fields the phase
law (11.3) becomes

Φ = exp
(
i

∮
κ · dr

)
= exp

(
i

∫
κ2dAr

)
:= exp(iΦE), (11.4)

where κ is the wave number [10]. The phase law (11.3) and (11.4) is the first
correct phase law of field theory, and gives the first correct explanation [10]
of well known phenomena of physical optics such as reflection, interferometry,
the Sagnac and Aharonov Bohm (AB) effects. The MH field theory is unable
to describe these effects because it is an incomplete theory [2-10] of special
relativity.

In Sec. 2 of the Tomita-Chiao effect [1,2] is derived from the Evans
phase law (11.4), and in Sec. 3 the Berry phase of matter fields [1,2] is derived
from the equivalent phase law (11.4). It is concluded that the origin of the
Berry phase is general relativity as developed in the Evans unified field theory
[3-10].

11.2 Derivation Of The Tomita-Chiao Effect From The
Evans Phase Law

The phase law (11.4) results in a rotation of plane polarized radiation (50%
right- and 50% left-circularly polarized) upon propagation in a helical path:

Ie = (i− ij)(eiφ + e−iφ) = 2i cosφ. (11.5)

To see this, consider initially plane-polarized light, defined as a sum of 50%
right- and 50% left-circularly polarized radiation:
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IL = Re(i− ij)eiφ = cosφi + sinφj,

IR = Re(i− ij)e−iφ = cosφi− sinφj.
(11.6)

After light has propagated along the arc length s of a helix, the phase factor
in Eq. (11.5) becomes

I ′e = (i− ij)ei(φ+ΦE) + (i− ij)e−i(φ−ΦE) = exp(iΦE)Ie (11.7)

as a result of the Evans phase law. The angle ΦE is the Evans phase. Equation
(11.7) is generally covariant, and an example of the principle of least curvature
[9]. The Tomita-Chiao effect [1,2] is therefore the observation of the Berry
phase [14] by rotation of the plane of linearly polarized light due to the scalar
curvature R of the helical optical fibre through which the light propagates.
After propagation over a distance s along the helix, the polarization changes
to

I ′e = 2 cosφ (cosΦei− sinΦej) , (11.8)

where we have used the angle formulas

cos(A±B) = cosA cosB ∓ sinA sinB,

sin(A±B) = sinA cosB ± cosA sinB.
(11.9)

Initially the plane polarized light was polarized as

Ie = 2 cosφi; (11.10)

so, after a propagation distance Z, the plane of polarization has changed from
(11.5) to (11.8) due to the Evans phase law (11.4). In MH electrodynamics
there is no such effect because the spacetime of the theory is flat, so R = 0.
In MH theory the phase is purely dynamical, and given by

IMH = exp (i(ωt− κ · r)) , (11.11)

so there is no mechanism available in special relativity with which to change
the plane of polarization of light propagating through a helical optical fibre.
Therefore, the Tomita-Chiao effect proves experimentally that the spacetime
of electrodynamics is non-Euclidean, with non-zero scalar curvature R. The
angle through which the plane of the light is rotated is given from Eq. (11.8)
as

tan θ =
sinφS

cosφS
, (11.12)

from which it is inferred that
θ = ΦE . (11.13)

Therefore the angle through which the plane of light is rotated in the Tomita-
Chiao effect, or in any Berry phase, originates in the Evans phase (11.4) of
unified field theory and is given in general by
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θ = κ

∮
ds = R

∫
dAr. (11.14)

In this equation, R is the scalar curvature of a given spacetime, or base man-
ifold, and κ is a wavenumber (inverse wavelength) associated with the wave
nature of the spacetime or base manifold. Thus matter waves and electromag-
netic wave are manifestations of spacetime itself as required in general rela-
tivity. In Eq. (11.14), ds is an infinitesimal line element of the non-Euclidean
spacetime. Significantly, Einstein’s original theory of general relativity orig-
inated from the fact that the square ds2 of the line element is an invariant
of general coordinate transformation [12]. The helix defines a rotating and
translating baseline in a non-Euclidean manifold. Similarly, the rotating and
translating transverse electromagnetic potential vector, defined by

A(1) = A(2)∗ =
A(0)

√
2

(i− ij)eiφ, (11.15)

describes the helical baseline of non-Euclidean geometry in the Evans unified
field theory [3-10]. The vector A(1) is the spacetime geometry itself multi-
plied by A(0). The helix in the Tomita-Chiao effect is a physical object that
guides A(0) along a helical path, creating a base manifold, or spacetime, with
a helical baseline. So the Evans phase law (11.14) applies equally well to both
situations. Similarly, the Evans phase law describes straightforwardly [10] the
Sagnac and AB effects. The latter is a type of Berry phase [1,2,15].

In the original Tomita-Chiao effect [1,2[ it was observed experimentally
that the plane of polarization of light is changed after propagation through a
helical optical fiber. If the helix is parameterized [10,16] by

x = x0 cos θ, y = y0 sin θ, z = z0θ, (11.16)

then
dx

dθ
= −x0 sin θ,

dy

dθ
= y0 cos θ,

dz

dθ
= z0. (11.17)

The wavenumber vector in general is

κ = κxi + κyj + κzk, (11.18)

and so the contour integral appearing on the right-hand side of Eq. (11.14) is∮
k · dr = −κxx0

∮
sin θdθ + κyy0

∮
cos θdθ + κzz0

∮
θdθ. (11.19)

Integration from 0 to 2π of Eq. (11.19) produces the result

κ

∮
ds =

∮
φκ · dr = z0

∫ 2π

0

κzθdθ = 2π2κzz0 (11.20)

because
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0

sin θdθ =
∫ 2π

0

cos θdθ = 0. (11.21)

Therefore the angle of rotation of plane polarized light in the Tomita-Chiao
effect is given by

θ = 2π2κzz0 = κ2
zAr, (11.22)

where Ar is the area of a circle whose circumference 2πr is equal to the arc
length of the helical fibre. (A helix can always be constructed from a circle
by cutting the circle, pulling it out into a line, and winding the line on a
cylinder. The arc length of the helix so constructed must be the same as the
circumference of the original circle. If the circle is pulled out into a straight
line, the length of the line is the circumference of the original circle.) By
integrating from 0 to 2π in Eq. (11.19), we have considered a special case for
simplicity of argument.

Equation (11.22) is therefore the result of the general formula (11.14)
applied to a helix of arc length s = 2πr. On writing κz = z−1

1 , the Tomita-
Chiao phase can finally be expressed as

θ = 2π2z0/z1. (11.23)

The Tomita-Chiao phase is conventionally described [1,2] by

exp(−iθ) = exp (−i2π(1− cosλ))

= exp (−2π) i exp(2πi cosλ)

= exp(2πi cosλ),

(11.24)

and this is the same as Eq. (11.23) upon identifying

cosλ = πz0/z1. (11.25)

Therefore we have derived the experimentally observed Tomita-Chiao
phase from the Evans phase law of generally covariant unified field theory [10].
In so doing the Tomita-Chiao phase is recognized as a phenomenon of general
relativity in which spacetime itself has a given non-Euclidean geometry, in
this case helical in nature.

11.3 Derivation Of The Berry Phase From The Evans
Phase

The Tomita-Chiao effect [1,2] is considered to be the first experimental obser-
vation of the Berry phase [14], and is sometimes known as the optical Berry
phase or Hannay angle [17]. Such a phase shift occurs whenever a physical phe-
nomenon is defined by a closed path in state space or parameter space [15].
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The closed path in the Evans phase law is defined by the generally covari-
ant Stokes law [3-10] of differential geometry, in which the exterior derivative
d∧ is replaced wherever it occurs with the covariant exterior derivative D∧.
Thus, a magnetic field of any type is always defined in generally covariant
electrodynamics in a non-Euclidean spacetime by

B = D ∧A (11.26)

and not by
B = d ∧A, (11.27)

as in MH field theory in flat (i.e., Euclidean) spacetime. This realization gives
rise [18] to the Evans-Vigier field B(3) and to O(3) electrodynamics [19], an
example of generally covariant electrodynamics [3-10] in which the orthonor-
mal space of differential geometry (indexed a [12]) is described by the complex
circular basis (1),(2), (3)) with O(3) symmetry. The complex circular basis is
a natural description of circular polarization [18].

The closed path for the helix is defined as follows, from A to B along
the helix and back from B to A along the axis of the helix; see Fig. (11.1).
In terms of topology [13] the Evans phase (and therefrom the Berry phase)
originates in the fact that a helix cannot be shrunk to a point, and so is not
simply connected. A circle can be shrunk to a point, a helix shrinks to a line,
the axis of the helix along Z. This procedure is analogous to drawing a helix
out into a straight line along Z. Therefore a covariant Stokes theorem must be
used to describe the closed path in Fig. (11.1), because the path back from B
to A along the axis Z of the helix cuts through the center of the path from A
to B along the helix. The generally covariant and non-Abelian Stokes theorem
needed to describe this path is [10]∮

κ(3) · dr = −i
∫

κ(1) × κ(2) · kdAr, (11.28)

and this is the phase of the Evans phase law (11.14). It has been shown else-
where [3-10] that Eq. (11.28) quantitatively describes many phenomena which
the MH phase (11.11) cannot describe qualitatively. In dynamics, the Foucault
pendulum is another example of the Berry phase [15], now known to originate
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in the Evans phase of generally covariant unified field theory [3-10], and in
electrodynamics the Pancharatnam phase [20] has similar characteristics and
origin.

As discussed in reference [15] any vector parallel transported in a closed
path produces the Berry phase. This procedure in the Evans unified field
theory is an outcome of general relativity as argued already. As described in
Ref. [15], the rotation angle of the Berry phase is related to the integral of the
curvature of the surface bounded by the loops. This is precisely what is shown
by the Evans phase in the forms (11.4), (11.14), or (11.28). The curvature of
the helix is

R = κ2, (11.29)

and this realization gives rise [10,18] to the Sagnac effect in light traversing
a circular path, a circle whose circumference is the same as the arc length of
the helix drawn out from the circle as argued already.

So the Tomita-Chiao and Sagnac effects are essentially the same [18],
and both are geometrical/topological phases originating in the Evans phase
of general relativity, as does the Berry phase and Pancharatnam phase and
all effects in physics in which these phases are observed [15]. All these effects
therefore serve as further experimental verification of the Evans generally co-
variant unified field theory [3-10]. The Evans phase law is more fundamental
than the Berry phase law because the former self-consistently describes both
the dynamical phase of physical optics (observed for example in ordinarily
reflection and interferometry) is an example of the Evans phase where the
wave number κ in Eq. (11.14) is a property of the radiation itself (the elec-
tromagnetic field). The Berry phase is an example of the Evans phase where
the wavenumber is an inverse distance or inverse periodic length or wave-
length defined by the wavelength (or scalar curvature R) of spacetime itself
as required by general relativity. In the Tomita-Chiao effect the set-up is an
optical fiber wound into a helix. Similarly, the area in Eq. (11.14) is either a
property of the radiation (dynamical phase from Evans phase) or of the set up
(geometrical/topological phase from Evans phase). The Pancharatnam phase
[20] can similarly be derived from the Evans phase by considering a closed
loop in spacetime in given optical configurations. The Foucault pendulum is
similarly an outcome of the Evans phase law applied to dynamics, as is the
Sagnac and AB effects, and indeed, all effects in optics. The dynamical phase
in optics always measures the B(3), or Evans-Vigier, field [18,19].

The Evans phase law is intrinsically gauge invariant [10] because it
always uses covariant derivatives. Self-consistently, the Berry phase is also
gauge invariant for the same reason: It is a geometrical phase [15]. States
in quantum mechanics are wavefunctions, and also acquire a Berry phase
in general [15]. This well-known result is now understandable through the
Evans phase and principle of least curvature [9], which unifies the Hamilton
principle of least action and the Fermat principle of least time, giving rise to
wave mechanics [9] and to the Schrödinger equation in the quantum weak field
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limit of the Evans unified field theory. The Berry phase in quantum mechanics
becomes part of the Evans phase, a part that is observable experimentally in
given configurations [1,2].

These inferences illustrate the fact that the generally covariant unified
field theory [3-10] is a powerful and general theory of radiated and matter
fields, and of geometrical and phases and related effects.
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